

RSM711 - Air Quality Sensor

RSM711 for the detection of Air Contaminants

The sensing element is comprised of a metal oxide semiconductor layer formed on an alumina substrate of a sensing chip together with an integrated heater. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

The **RSM711** is a metal oxide semiconductor type sensor in which a sensor layer and a heater layer are formed on an alumina substrate. It can detect the gaseous air contaminants. In the sensor, the sensing materials are placed on the alumina substrate, and the resistance of the sensing material is varied according to the concentration of the air pollution gases.

The **RSM711** is fabricated on the TO-5 package with several holes. It can reduce the influence of interference gases as well as protect from humidity or dust.

KNSLab Co., LTD.

CONTENTS

1. Features	2
2. Applications	2
3. Description	3
4. Specifications	3
5. Application Guide	4
6. Pin Configuration and Dimensions	4
7. Typical Characteristics	5
8. Revision History	6

Product Folder Links: RSM711

IMPORTANT NOTE:

OPERATING CONDITIONS IN WHICH RNSLAB PRODUCTS ARE USED WILL VARY WITH EACH CUSTOMER'S SPECIFIC APPLICATIONS. RNSLAB STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING RNSLAB PRODUCTS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER'S TARGET VALUES ARE NOT LISTED HEREIN. RNSLAB CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS PRODUCTS IN A PRODUCT OR APPLICATION FOR WHICH PRODUCT HAS NOT BEEN SPECIFICALLY TESTED BY RNSLAB.

1. FEATURES

- Low power consumption
 - Approx. 200mW @ 5.0V supply
- High sensitivity to Air contaminant gases
 - Cigarette smoke, Cooking odors
 - CO / Ethanol / HCHO / etc.
- Small size
 - Metal Can Package (TO-5)
- Uses simple electrical circuit
- Low cost

Device information

Part No	Package	Size (mm)
RSM711	TO-5 metal can	Ф9.1 х 7.2

2. APPLICATIONS

- Air cleaners
- Ventilation control
- Indoor air quality measurement systems
- IoT devices for air quality monitors
- · Gas alarm device

FIGURE 1. RSM711

The figure below represents typical sensitivity characteristics. All data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (R_S/R_O) which is defined as follows:

- R_S=Sensor resistance in displayed gases at various concentrations
- R_O=Sensor resistance in fresh air

The figure below represents typical temperature and humidity dependency characteristics.

The Y-axis is indicated as sensor resistance ratio (R_s/R_o) which is defined as follows:

- R_S=Sensor resistance in displayed gases at various Temperatures/humidities
- R_O =Sensor resistance in fresh air at 25°C and 60%RH

SENSITIVITY CHARACTERISTICS:

Product Folder Links: RSM711

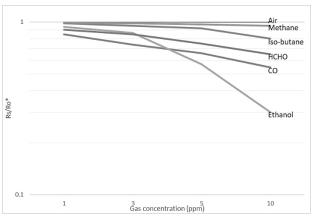
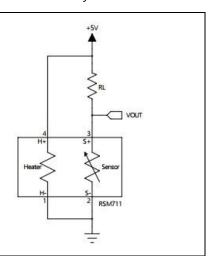


FIGURE 2. SENSITIVITY

TEMPERATURE / HUMIDITY DEPENDENCE:

3. DESCRIPTION


The sensing element is comprised of a metal oxide semiconductor layer formed on an alumina substrate of a sensing chip together with an integrated heater. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

The **RSM711** is a metal oxide semiconductor type sensor in which a sensor layer and a heater layer are formed on an alumina substrate. It can detect the gaseous air contaminants. In the sensor, the sensing materials are placed on the alumina substrate, and the resistance of the sensing material is varied according to the concentration of the air pollution gases. The RSM711 is fabricated on the TO-5 package with several holes. It can reduce the influence of interference gases as well as protect from humidity or dust.

Basic measuring Circuit

The sensor requires voltage input: Heater voltage (+5V). The heater voltage (H+, H-) is applied to the integrated heater in order to maintain the sensing element at a specific temperature which is optimal for sensing.

Also, input voltage (+5V) is applied to allow measurement of of voltage across a load resistor (RL) which is connected in series with the sensor. The value of the load resistor (RL) should be chosen to optimize the alarm threshold value, keeping power consumption of the semiconductor below a limit of 30mW. Power consumption will be highest when the value of Rs is equal to RL on exposure to gas.

4. SPECIFICATIONS

Product Folder Links: RSM711

Model		RSM711		
Sensing principle			MOS type	
Standard package			TO-5 metal can	
Target gases		Air contaminants (Hydrogen, ethanol, CO, etc.)		
Typical detection range			1~500 ppm CO	
	Heater voltage	V_{H}	5.0 V DC	
	Heater Resistance	R _H	Approx. 83 Ω at RT	
Electrical characteristics	Heater Current	I _H	40±4 mA	
under std test	Heater Power consumption	P _H	200 mW (typical)	
	Sensor Resistance	R_S	10~50 MΩ in Air	
	Sensitivity (change ratio of R _S))	0.4~0.5 (Rs-gas / Rs-air @CO 10ppm)	
	Test gas conditions		Normal air at 25±2℃, 60±5% RH	
Standard test conditions	Circuit conditions		Same as std circuit conditions	
conditions	Conditioning period before test		3-days or longer	

5. APPLICATION GUIDE

Heater voltage is applied to the heater to maintain a specific temperature at which the sensing material is optimized for detection. DC voltage is required for the circuit.

Since the output of the sensor is a resistance, a conventional measurement part should have a current source in parallel with the output of the sensor to convert the resistance to voltage.

The change of the sensor resistance (R_S) is obtained as the change of the output voltage across a load resistor (R_L) which is connected in series with the sensor.

6. PIN CONFIGURATION AND DIMENSIONS

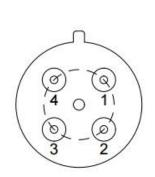


FIGURE 3. PIN CONFIGURATION

Pin functions

PIN		Type ¹⁾	FUNCTION Negative Negative	
NAME	NO.	I/O		
HEAT-	1	G		
SENS-	2	G		
SENS+	3	0	Positive	
HEAT+	4	Р	Positive	

 Type: I=input, O=output, I/O=input and output, P=power supply, GND=ground

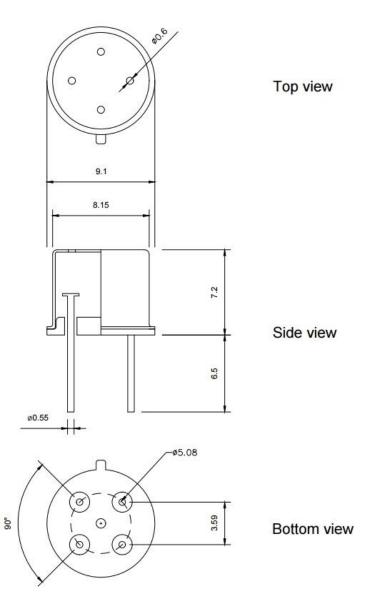
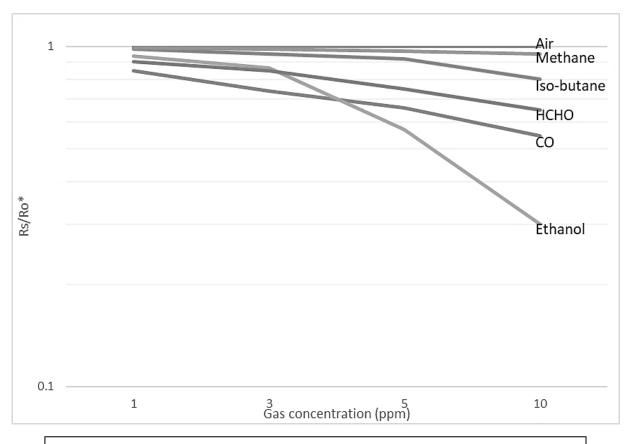



FIGURE 4. PACKAGE DIMENSION

7. TYPICAL CHARACTERISTICS

- Rs = Sensor resistance in displayed gases at various concentrations Ro = Sensor resistance in fresh air

8. REVISION HISTORY

Rev. No	Chapter	Description of modification	Date
0.1		Initial release	April. 2021

For inquiries about Gas Sensor products, please contact us below.

#1001, 823, Dongtansunhwan-daero, Hwaseong-si, Gyeonggi-do, Korea. 18471

www.RNSLab.com

e-mail. admin@rnslab.com Tel. +82-31-5183-5131

Copyright © 2021, RNSLab Co., Ltd.